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Inner-sphere reorganizatior in optical electron transfer

Paul Delahay* and Andrew Dziedzic

Department of Chemistry, New York University, Nev York, New York 10C03

(Received )

Free energies for photoelectron emission by aqueous solutions of hexaquo
cations (V2+, Cr2+, Fe2+), metal complexes (Fe(CN)g', Co(NH3)g*) and
inorganic_anions (OH™, C17, Br~, I7) are calculated from theory and.compared
with experimental threshold energies. Good agreement is obtained within the
estimated error (#0.2 eV) on emission free energies. The free energy for
outer-sphere reorganization is calculated from a continuous medium model. The
inner-sphere reorganization energy is obtained from a bond-stretching model for
hexaquo cations ana metal complexes. A new method is developed for the calculation
of the inner-sphere reorganization energies of univalent anions from their free
energies of hydration. Réorganization free energies for electron transfer
reactions (vz*/3*, Crz*/3+, Mn2+/3+, Fez*/3*, Fe(CN)g"3') calculated from
exper imental threshold energies and computed outer-sphere reorganization free
energies yield activation free energies in agreement with the values obtained

from kinetic measurements. Improvements are discussed for the determination

of threshold energies by extrapolation.

I. INTRODUCTION
The calculation of the free energy of reorganization of nuclear
coordinates is an essential part of the theory of electron transfer reactions

in so'lution.1

The inner-sphere energy is generally calculated from a
bond-stretching model for central ions having well defined coordination
numbers, e.g., for electron transfer between Fe(Hzo)g* and Fe(H20)2+.

The outer-sphere free energy is obtained in general from the classical theory

of nonequilibrium polarization of a continuous medium. The experimental
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verification of the energies computed from theory ultimately rests on the
agreement between calculated and experimental kinetic data for electron
transfer reactions. |

2 in which the

A very different approach was recently developed
recrganization free energy is obtained directly from experimental results on
the energetics of photoelectron emission by aqueous solutions in the 6 to 11
eV range of photon energies. The emission yield Y is measured in such
experiments as a function of photon energy E, Y being definea as the number of
collected electrons per incident photon. The yield is a quadratic function
(E - Et)2 of E, where Et is the threshold energy. (This relationship
holds for E higher than Et by a few tenths of an electronvolt.) The
reorganization free energy R for the emission process is obtained from the
experimentally determined threshold energy Et‘ The quantity R thus obtained
is different from the corr;sponding free energy for thermal electron transfer
since.emission involves only one species (e.g., ferrous ion) whereas electron
transfer occurs between two different species (e.g., ferrous and ferric

ions). There is, however, a correlation3’4

between the reorganization free
energies for the optical and thermal cases.

The application of the emission method to aqueous solutions is of general
scope since most inorganic species have lower threshold energies than water
(10.0420.02 eV). The method was tested4 by applying it to cations (V2+.
Cr2+, Fe2+) for which calculated reorganizaticn free energies are known to
yield agreement with experimental kinetic data on thermal electron transfer.

Application of the emission method to anions is of particular interest

because water molecules are oriented in the electric field around anions

rather than forming a definite coordination complex as with transition metal

ions.5 The distinction between inner- and outer-sphere regions can be
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maintained,6 but the bond-stretching model is no longer applicable to the
inner-sphere region of anions and a new interpretation is needed. Such an
interpretation, which is closely related to the treatment of the hydration
energies of ions, is developed in the present paper. The validity cf the
emission method will be tested first on the basis of a revised equation for
the energy of inner-sphere reorganization anc consicerably more reliable
threshold ‘energies than those previously available. Correlation between

optical and thermal electron transfer processes will also be discussed.

II. FREE ENERGY OF EMISSION AND DETERMINATION OF THRESHOLD ENERGIES

The free energy AGm for emission by an agueous solution of species
A%*(aq) isl»d (z $0),

86, = 86y + 26 + R+ | elay, (1)
where AGH_(s 4.48+0.06 eV)'and AG are the changes of free energy for the
reactions 1/2H2(g) = H+(aq) + e (g) and Az+(aq) + H*(aq) =
A(Z+1)+(aq) + 1/2H2(g), respectively; R is the free energy of
reorganization; e is the electronic charge and QI the difference between the
surface potentials of the solution being studied and water (included in the
calculated value of AGH). The free energy AGm can be set equal to the

threshold energy Et as will be shown below. Equation (1) therefore allows

the experimental determination of the reorganization free energy R provided
that thermcdynamic data are available for the computation of aG. The term
Jel ax for surface potentials in Eq. (1) is negligible (< 0.05 eV in absolute
value in general) for this purpose.

The threshold energy Et needed for the calculation of the free energy R
is obtained by extrapolation of the square root of the yield Y against the
photon energy E (Sec. I). The extrapolation is somewhat uncertain because

dispersion of the solvent affects the energetics of emission’ and actual
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plots of Yll2

against E deviate from linearity (especially below 10 eV).
Threshold energies therefore depena somewhat on the range of photon energies
in which Yllz is supposed to vary linearly with E. The resulting value of

Et for a given emitter varies by a few tenths of electronvolt depending on
the selected range of assumed linearity. The standard deviation for a given
range, howeyer, does not exceed in general 0.0l to 0.02 eV. This uncertainty
about threshold energies was greatly minimized by the analysis of data
discussed in the Appendix and by considerable improvements in methodology and

instrumentation.’

ITI. HEXAQUO CATIONS AND METAL COMPLEXES

A. Inner- and outer-sphere reorganization

The energy of inner-sphere reorganization U;, for emission is
(historical background in éef. 1),

Ui = (RF2)Fo(89,)°, (2)
where N is the coordination number of the emitting species; fo the force
constant between the metal ion and the ligand for the oxidized species
A(Z+1)+(aq); 4q, the change in the metal-ligand distance upon oxidation.
Equation (2) differs from the one previously applied4 in which the mean
value of f for both reduced oxidized forms was used. The mean value of f

8 in which there is reorganization about

holds for thermal.e1ectron exchange
both reduced and oxidized species. There is reorganization only about the
oxidized species in the optical case, and f0 must be used. This difference,
which was pointed out to the authors by Sutin,9 is significant since the use
of fo instead of the mean value of f increases Uin by ca. 30 percent for

the cations studied in this work.

The force constant fo is computed from the stretching frequency10 Yo
of the oxidized species, namely fo = 412v§c2u, where ¢ is the speed
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of light in vacuum and u is the reduced mass generally set equal to the mass
8

of a single ligand melecule or ion.

The free energy Rout for outer-sphere reorganization is,

Rout = (1/egp - 1/e)e?/2a, (3)
where cgp is the limiting value of the optical constant of water in the
visible range (egp = 1,777 at 25°C), € the static dielectric constant
of water, and a the mean radius of the assumed spherical boundary between

8

inner- and outer-sphere regions. One has” a = 2azaz+1/(aZ + az+1),

‘where the subscripts refer to AZ+(aq) and A(2+1)+(aq), respectively. OCne

2+/3+

generally sets a=r_ + 2rw for ions such as M(HZO)G , where

o
re and r, are the crystallographic radii of the ion and water (rw = 1.38
R), respectively. A thickness of the first hydration shell different from
2r, = 2.76 A is recommended in Ref. 11 according to the number of
coordinated water molecules, e.g., 2.19 and 2.51 A for tetrahedral and
octahedral Structures, respectively. The use of this thickness increases
Rout by ca. 0.1 eV at most for the cations of Sec. IIIB. The usual
thickness of 2.76 A was used for hydrated cations in agreement with the
approach in electron transfer reactions.

B. Free energies of emission and experimental threshold energies

Experimental threshold energies corrected for dispersion (Appendix) are
compared in Table I with the values of 86, computed from Eq. (1) (data from
Ref. 10, 12, 13). The 46 -values are within 20.2 eV because of the
following sources of possible error on the terms of Eq. (1): #0.1 eV from the
uncertainty on the surface potential of water (term AGH) and the neglect of
leleﬂ; #20.1 eV on AG because of possible minor complexation, hydrolysis, and

departure from ideality; 20.1 eV on Rout because of the uncertainty about

. *h'~
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6
Qi the thickness of the inner-sphere sheil (Sec. IIIA); up to #0.2 eV on Rin
:f mostly because of the uncertainty of #0.01 A on 4q,. The error on Et for

a given extrapolation range is negligible (#0.01 to 20.02 ev, Sec. II), but

some systematic error on Et may remain even with the improved determination

~

%y . (Appendix) of the best extrapolation range. The systematic error on Et
= should not exceed #0.05 eV.

,L Agreement between the AGW'S and E.'s in Table I is as good as can be

expected in view of the preceding error estimates. It is concluded that the

" energetics of photoelectron emission are understood for aqueous solutions of

i
L o
s WIS

T %

the hexaquo cations and metal complexes of the type in Table 1. Furthermore,

the free energy of emission AGm can be equated to the experimental threshold

‘.

energy to the approximation required for the computation‘of the reorganization

.
.
.

free energy R from Eq. (1).

«

*ﬁ The contribution from R . to a6 in Table I is significant (ca. 1.0

&: ev) but does not vary much whereas aG and Rin change significantly from one
; ion to another. In general, threshold energies tend to be low for strong

3 reductants such as Cr2+ and high for ions producing strong oxidants upon

gﬁ photoionization. This trend, however, can be offset by the contribution from
%i Uin' Thus, Cr2+ and Fe2+ have not very different threshold energies

Ef because the difference of 1.18 eV between the aG's is largely compensated by
P the mich higher U, for CrZ" than Fe?”.

§ The threshold energies for v2* ‘and Cre* in Table I are higher than the

:ﬁ previously reported values.14 The error on the latter (6.38 and 6.14 eV)

E% undoubtedly resulted from the uncertainty about the extrapolaticn range and
22 the much higher noise level than in the present work. The threshold energy of
;? Fe(CN)G' in Table I is higher15 than the previous value16 (5.5 ev)

é} obtained from emission yields reported in Ref. 17. The reorganization free
g;

..............
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energy for the value of Et = 5.5 eV was judged anomalously low in Ref. 16,

and emission was interpreted in terms of autoionization of a bound state.

This conclusion does not seem justified in view of the higher'threshold energy

;F: (6.2 eV) in Table I and the reasonable agreement with 4G = 5.8 eV.

?;; The free energy Rout for outer-sphere reorganization can be computed in

g; most cases from Eq. (3) since the radius a can be estimated from

2¢§ crystallogréphic radii or by some other method. Data for the calculation of
;iz Uin from Ed. (2) are rather scarce, and experimental threshold energies are

" useful in the calculation of the inner-sphere free energy Rin (R = Rip +

;h; Rout with Rip Uin) from £qs. (1) and (3) (Table II, datum from Ref.

j;ﬁ 18). Such data can be useful in estimating kinetic data for electron transfer
;“; reactions from threshold energies (Sec. IIIC). The value Rin ® 0.2¢0.1%, eV

'l; for Ag* and T1% in Table I] indicates that the change 4q, in the

3 metal-ligand distance upon oxidation must be very low (Eq. (2)) or that

v emission occurs via autoionization of an excited bound state.l®

:Eﬁ C. Correlation with thermal electron transfer

;° The energetics of photoelectron emission were correlated3’4 with the

iif kinetics of electron transfer reactions in solution on the assumption that the
?%3 mean force constant for the reactants appears in the expressions for the

'.f? inner-sphere reorganization energies for the optical and thermal cases. This
N is only approximately the case as noted in Sec. IIIA. The correlation is then
132 very simple.

éif A Electron transfer reacticns occur between the reduced and oxidized species
‘?ff ) of a redox couple whereas emission is observed with a solution containing only
;Eé the reduced species. The energy U?n for thermal transfer therefore is |
l:? twice the energy Uir for emission. The outer-sphere reorganization free j
i enerqy R:ut 7=t :rmal electron transfer is given by Eq. (3) in which

oy

8
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1/2a is replaced b ‘f;'l ti:'l - r‘l) where the a's pertain to
P Y, 0 ro P

the reduced and oxidized species and re is the distance of closest approach

o}
between the centers of the reactants. Since the radii a. and a, are not

very different, they can be set equal to the radius a of Eq. (3).

-~ X %
Furthermore, one has Fro = 3 + 3, ® 2a, and consequently Rout is
equal to ROut for emission to a good approximation. Hence,
X X X
R™ = Rout * Rin
= Pout * “Rip
= 2R - Rdut’ (4)

Thus, R* can be obtained from threshold energies (Eq. (1)) and application
of Eq. (3) to the calculation of Rout’

This treatment is approximate because the force constant f0 is
applicable to the optica]_;ase (Eq. (2)) whereas the mean value f =

Zfrfo/(fr + fo) is valid for thermal electron transfer.8 One has

accordingly,
X
Uip = [4frl(fr + fo)]Uin, (5)
instead of U?n = 2Uin in Eq. (4). Setting R:n = U?n one
obtains,

X
R = R+ [(3F - £ )/(f. + f)IU,,
= [4frl(fr + fc)]R - [(3fr - fo)/(fr + fo)]Rout’ (6)
instead of Eq. (4). Equation (€) obviously recuces to (4) for fr = fo.

The difference is significant, e.g., R* = 1.52R ~ 0.52R_ . for f, = 1.6 x 10°
and fo = 2.6 x 10s dyne cm"1 instead of Eq. (4).

The recrganization free energy R* js related to the free energy of
activation AG* for electron transfer in solution involving no change of free
energy by the relationshiplg'zo

a6 - R¥/8 + w, (7)

PR S A ‘."T
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where w is the work required to bring from infinity in solution the two
reactants together in the precursor state. The term w is generally minor (ca.
0.05 eV). Equation (7) is approximatel’8 but suffices for our present
purpose.

Values of R* and AG* from Eqs. (6) and (7) are compared in Table III
with the free energies of activation deduced from kinetic data.21 The

2* was obtained from the Marcus cross

experimental value of AG* for Mn
relationship and is very approximate. These results show that rather good

estimates of R* can be obtained from threshold energies and Eqs. (3) and (6)
without data on the change 4q, in the metal-ligand distance (Eq. (2)). This

may prove useful in the study of unstable redox couples in solution.

IV. ANICNS

A. Correlation between inner-sphere reorganization and ionic hycration

We consider photoelectron emission by aqueous solutions of univalent anions
A" (agq). This process is the opposite of the hydration of the ion A™(q)
except that the negative charge is removed from solution by the electron and
the hydrated atom or radical A(aa) is left in solution in the emission
process. There is therefore a close correlation between the free energies of
hydration (AGS) and inner-sphere reorganization (Rin)' This correlation
will be established.

The hydration free energy can be written as the following sumllz

4G, = a6 . * aGg * U(ep) + Ulep ) + U(pp) + U(pup) + U(eq) + U(pq)
* U(p,a) + U(qa) + Udisp(A'w) + Udisp

Notations are as follows: AGcav the free energy for formation of the ionic

(ww) + U + AGv + AGSt. (8)

rep

cavity in the liquid with breaking up of the liquid water structure around the

ion; AGB the free energy for Born charging beyond the inner-sphere boundary;

CS R RNE
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terms such as U(ep) representing the interaction energies involving the ionic

charge (e), water dipoles (p), water induced dipoles (pa), water quadrupoles
(q); U

energies; U

(A"w) and U (ww) the ion-water ard water-water dispersion

disp disp

rep the enerqy for ion-water and water-water repulsion; AGV the

free energy for the change of volume of the liquid resulting from ionic
hydration; AGSt a correction for reference to the standard state. The energies
for induced dipole-induced dipole interaction and the formation of induced
dipoles which are included in the expression for AGS in Ref. 11 were deleted in
£q. (8) since these terms should cancel out according to Ref. 22.

The following terms in Eq. (8) do not pertain to inner-sphere
reorganization: AGB, since Born charging is taken into account separately in
emission by the introduction of the outer-sphere reorganization free energy;
U(epa), which accounts for an interaction involving no change in nuclear
configuration; the difference of dispersion energies,

AUdisp = Udisp(A-w) o - Udisp(Aw) ro’ (9)
where both terms are calculated for the nuclear configuration of the hydrated
jon A" (aq) (denoted by the subscript ro). The other terms in Eq. (8) are the
same in absolute value for AGS and Rin'

The free energy Rin (> 0) is,

Rin = - [AGs - 86p - U(epa) - AUdisp + AGn], (10)
where AGn is the -hydration free energy of the atom or radical A(g). This

term accounts for the formation of the hydrated species A(aq) in emission.

B. Calculation of the inner-sphere reorganization free energy from the

hydration free energy

Expressions will be given for the terms of Eq. (10). The Born free energy

is,

a6g = - (1 - egl)ez/za, (11)

A A aome Al ol

¥ W




11
where the radius a = re* wa =r.* 5;76 (R) (Sec. IIIA). The energy
U(epa) for charge-induced dipole interaction is,

Uep,) = - Nepalrg. (12)
where N is the number of water molecules in the inner-sphere shell, Py is the
induced dipole, and Yo = Te + r, on the assumption that the center of the

6

induced dipole is at the distance r_ + T from the charge. One has,

c
p, = (1/2)ee/rs, (13)
where a (= 1.444 x 10'24 cm3) is the polarizability of the water molecule.
The dispersion energies in Eq. (9) are of the form
Ugisp = = (M2)IT /(1 + 1')Jaa’ /1, (14)
where I and I' are the ionization energies of water and the ion A7(g) or
radical A(g), respectively, and o' is the polarizability of A"(g) or A(g).
Values of Rin computed from Eqs. (9) to (14) for N = 4 (OH™) and 6
(halides) are listed in Table IV (data from Ref. 23 to 30). The choice of
N = 6 for the halides is supported by the recent neutron diffraction

31

determination” of N = 6.2%0.4 for C1-. The vibrational contribution to

R].n for OH  was neglected since the O-H interatomic distance is the
same>% within 0.002 A for the ion OH™(g) and the radical CH(g). It is
concluded that, to a first approximation, inner-sphere reorganization of the

univalent anions studied in this work is equivalent to the inverse of hydration

except for Born charging and charge-induced dipole interaction. i
The Rin values from Table IV were used to compute the emission free

energies AGm listed in Table V (data from Ref. 33 and 34). The hydration

free energy AGn of A(g) in Eq. (10) was eliminated by introducing aG - AGn

and R + AGn = R ¢t Rin *+ 86, in Eq. (1). The quantity aG - AGn is the

ou
change of free energy for the reaction, A"(aq) + H+(aq) = A(g) + 1/2H2(g),

for which accurate thermodynamic data are available in the present case. The
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E use of approximate data30 on AGn is avoided in this way. The values of AGm
;g in Table V include the contribution from the surface potential of pure water
1 (cf. discussion of Eq. (1)). The agreement between the aG 's and the
Eé experimental threshold energies for anions is comparable to the agreement
'Ej achieved for cations in Table I. The threshold energy for F~ could not be
o determined since AGm is higher by ca. 0.6 eV than Et = 10.04%0.02 eV for
3 liquid water. i
‘:? The free energy Rin was also calculated by considering the terms in Eq. (8)
, ‘for AGS which do not appear in Eq. (10). This approach which does not make use
‘ﬁ of the experimental hydration free energy AGS is much more demanding of the
‘3 model than the application of Eq. (10). Molecular dynamics simulation
? calcu]ations35 show that distribution functions must be introduced for the
'é ‘orientation of water molecules about the anion. Calculations for the halides
- based on the simple expressions of Ref. 11 for the U-terms of Eq. (8) showed
] that the dominant terms in Rin are the free energy for ionic cavity
g formation, the charge-dipole energy, the charge-quadrupole energy and the
.; repulsion energy.
¥ CONCLUSION
i Three main conclusions are reached. (i) Calculated free energies of
A emission (#0.2 eV estimated error) are in good agreement with experimental
z threshold energiés for metal hexaquo cations and complexes and inorganic
; anions. (ii) The calculation of inner-sphere reorganization energies of

univalent anions from hydration free energies developed in the present paper

yields values agreeing with experiment. (iii) Reorganization free energies

.:'v :

pd

for electron transfer reactions calculated from experimental threshold

A

2 m — s i

energies and computed outer-sphere reorganization free energies yield

.

activation free energies in agreement with experimental values.
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APPENDIX

Threshold energies were obtained by the following extrapolation procedure:

Y1/2/dE was computed as a function of E by digital

36-39

The derivative d
processing and differentiation by means of Savitzky-Golay filters. The
derivative dY1/2dE would be independent of E if the quadratic emission law
(E - Et)2 held rigorously: Actually, there is a dispersion correction
AGd to the free energy of emission because electron transfer is observed at

a photon energy at which the optical dielectric constant of the solvent is

o

different from the limiting value €op

in the visible range (egp = 1.777
for water at 25°C). One has,

86y = K[1/eQy - ey/ (e + e2)1, (15)
where 2 and e, are respectively the real and imaginary parts of the
dielectric constant of water at the photon energy E, and K is a constant for a
given jon. The ia\ue of K is derived in Ref. 7, but K in fact was obtained by
a fitting procedure described below. Thus, the value of Et in (E - Et)z

depends on the value of E at which Y is measured, and consequently dY“2

1/2

/dE

varies with E and extrapolation of Yll2 to Y = 0 is uncertain.

Dispersion was corrected for by shifting each point representing Yll2
along the E-scale toward lower photon energies by the value of 4Gy calculated

for a given K and the prevailing experimental values of ¢} and ¢, obtained

---------
-------
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from reflectance spectroscopic data on liquid water.40 The resulting plot of

shifted Y1/2 points against E is corrected for dispersion for the proper

value of K. The latter was determined by minimizing the standard deviation of
dY1/2/dE about its mean value in a given interval of photon energies (ca. 1
eV). Dispersion corrections to Et are rather small (< 0.1 eV in absolute
value), but the preceding procedure is very useful in ascertaining the proper

range for linear extrapolation to Yll2 = 0.
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Table I. Calculated free energies of emission of cations and metal complexes

;i o6 Uin Rout i °Gm ‘ Et d
¥ (ev) (ev) (ev) (ev) (ev)
é

‘é v (0.5 M) -0.25 1.07 1.15 6.5 6.82
ha cr?t (1w -0.41 1.91 1.15 7.1 7.06
- Fe?* (1 m) 0.77 0.9  1.14 7.3 7.30
3 Fe(CN)f™ (0.2 M) 0.3  0.05 0.9 5.8 6.2
‘f Co(NHy)2" (0.2 W) 0.1 2.24 1.18 8.0 7.8
;t aComputed for N = 6; fo = 2.55 x 105 dyne cm'1 for v2+, Cr2+, Fe2+

v obtained from10 Vo = 490 cm'l; fo = 4,00 x 105 dyne c:m'1 for Fe(CN)G'

: fromt0 v, = 511 cm’l; f, = 2.48 x 10° dyne el for Co(NH3)§+

3 front® u_ = 498 cn”l; aq = 0.15 (v2*) from Ref. 12, 0.20 (cr?"), 0.14

. (Fe?*), 0.026 (Fe(CN)g™), 0.22 A (Co(NHz)2") from Ref. 13.

E; bComputed for a = 3.48 (V2+, Cr2+), 3.51 (Fe2+), 4.5 (Fe(CN)g’), 3.35 A

2 (Co(NHy)2"), .

: €20.2 eV estimated error (see text).

¢3 d4=0.05 eV possible systematic error from extrapolation (see text).
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¥ Table II. Free energies Ri of inner-sphere reorganization of cations

n
.o calculated from threshold energies

s (eV) (ev) (ev) (eV)

<5 Agt (1 M) 7.67 2.00 1.0 0.2
%) nt oawm 7.85 2.2 1.0 0.2
' W2 (1 M) 7.95 1.56 1.1 0.8

% 2 .om Ref. 18 for T1*/T12",

P bComputed for a = 4.0, 4.1, 3.56 A, respectively.

o cEstimated error of #0.2 &V from the uncertainty on Et’ AG and Rout'

e LN L N N T -~ .r RIS Y N S L B \-.\-.\-.\:.\.
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Table III. Activation free energies for electron transfer reactions calculated

from threshold energies versus experimental values

rR2 R* b we AGtalc AGtxp d

(ev) (ev) (ev) (ev) (ev)
vZ* (0.5 m) 2.59 3.38 0.04 0.88 0.87
crdt (1 m) 2.99 4.00 0.05 1.05 1.03
MnZ* (1 M) 1.91 2.36 0.03 0.62 (0.75)
Fe2* (1 m) 2.05 2.55 0.06 0.70 0.69
Fe(CN)g™ (0.2 %) 1.3 1.95 0.04 0.53 0.47

8 rom Eq. (1) and data in Tables I and II.

BFrom Eq. (6) and Ry,¢ Values from Tabies I and II. f, = 1.61, 1.61, 1.66,

1; fo = 2.55 x 105 dyne cm’1 for four cations

dyne cm'1 for Fe(CN)g‘. Estimated error, #0.15 eV.

1.61, 5.24 x 10° dyne cm™

and 4.00 x 10°

cFrom Ref. 3.

dFrom Ref. 21. Value for Mn2+ from Marcus cross relationship.
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Table IV. Calculated free energies of inner-sphere reorganization of anions

N a c
fﬁ r --AGS -6, -U(epa) AUdiSp a6

C
(R) (ev) (ev) (ev) (ev) (ev) (ev)

¥ F~ - 1.36 4.50 1.73 1.11 0.06 0.1 1.62
LE& o) i 1.81 3.30 1.56 0.60 0.08 0.11 1.11
Br- 1.95 3.00 1.5 0.51 0.07 0.09 0.96
2.16 2.61 1.44 0.40 0.05 0.13 0.69
OH™ 1.47 3.93 1.68 0.63 - -0.09 1.71

A
f—
[}

W b
s "
AN

v

3 pom Ref. 23.
b

NPT AN
DAaAGANY .

From Ref. 24 for F~ and OH” and Ref. 25 for C17, Br-, I”.

EN CValues of I and I' from Ref. 26 and 27; a'-values from Ref. 28 for A" (g) and

ON from Ref. 29 for A(q).

dFrom Ref. 30. #0.04 to 20.1 eV uncertainty on these values of AGn.
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Table V. Calculated free energies of emission of anions versus experimental

o] threshold energies

a b
AG—AGn Rout Rin*AGn AGm Et

X (ev) (ev) (ev) (ev) (ev)

Y Wa
-
1

3.48 0.96 1.72 10.6 -

Y

‘CI' 2.45 0.87 1.22 9.0 9.00
Br~ 1.92 0.84 1.05 8.3 8.15
1.26 0.80 0.82 7.4 7.43
OH™ 1.89 0.94 1.62 8.9 8.59

ALY
=

- -
~ %From Ref. 33 except for OH™ (Ref. 34).

bi=0.05 eV possible systematic error on Et‘ 1 M solutionms.
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